/en/research/highlights/index.html
Highlights from 2012
For earlier years see Archive

 


Fluctuating liquid structure induces ultrabroad infrared absorption: The hydrated proton on ultrafast time scales

4th July 2016

The elusive infrared absorption continuum of protons in aqueous environment has been topic of intense controversial debate since half a century. A team of scientists from the Max Born Institute and the Ben Gurion University of the Negev, Israel, show for the case of the Zundel cation (H2O...H+...OH2) H5O2+ that the surrounding liquid induces fluctuating electrical forces onto the proton, modulating its vibrational motions between the two water molecules. This mechanism, together with low-frequency thermal motions, results in the extreme broadening of the infrared spectrum.

The proton (H+), the positively charged nucleus of a hydrogen atom, plays a fundamental role for many processes in nature. In liquid water, the transport of electrical charge is dominated by moving excess protons while proton motions across cell membranes are at the heart of cell respiration. In spite of this relevance, the molecular nature and dynamics of excess protons interacting with water molecules in their environment are not fully understood. Vibrational, in particular infrared spectroscopy has helped to identify limiting molecular structures of hydrated protons such as the Eigen and Zundel cations where the latter displays an extremely broad unstructured infrared absorption, a so-called "Zundel continuum" (Figure 1). In liquid water, such structures are unstable and expected to undergo rapid changes on a time scale of femto- to picoseconds (1 picosecond = 1 ps = 10-12 s). The mechanisms underlying the absorption continua have remained highly controversial.

Researchers from the Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy in Berlin and the Ben Gurion University of the Negev in Beer-Sheva, Israel have now applied nonlinear infrared spectroscopy with femtosecond time resolution to elucidate the nature of the broadband continuum. For the particular model case H5O2+, the Zundel cation consisting of two water molecules held together by a proton (H2O...H+...OH2), they dynamically dissect the Zundel continuum from the regular OH stretching and bending vibrations of the two water molecules (Figure 2). As they report in Angewandte Chemie Int. Ed. (DOI: 10.1002/anie.201602523 ), a judicious choice of femtosecond vibrational excitation allows for isolating the transient continuum absorption. The different excitations show lifetimes below 60 fs, much shorter than the OH stretching and bending vibrations of neat water.

A theoretical analysis of the results demonstrates that the extreme broadening of the infrared absorption is caused by motions of the inner proton exerted by the strong, rapidly fluctuating electrical fields that originate from the surrounding polar solvent molecules. The energy of proton motions along the so-called proton transfer coordinate, the direction connecting the two water molecules in (H2O...H+...OH2), is strongly modulated by these external fields, resulting in a concomitant modulation of vibrational transition energies. On a time scale faster than 100 fs, the system explores a broad range of transition energies. Together with vibrational overtones, combination tones and modes changing the distance between the two water molecules the field modulated transitions lead to the observed extreme broadening of the infrared absorption. Due to the extremely fast structural fluctuations, particular H+ arrangements are washed out very rapidly, i.e., the system has an extremely short-lived structural memory.

This new view at the Zundel cation clearly goes beyond the many studies of gas phase cluster work on hydrated protons, where due to the low temperature conditions, the Zundel continuum is not observed. The results are of relevance for many dynamic aspects of hydrated protons, be it for proton transport in water by the infamous von Grotthuss mechanism, in hydrogen fuel cells, or biological systems functioning with proton translocation mechanisms.

dahms

Abb. 1 (click to enlarge)

Fig. 1: Hydration of protons goes beyond the hydronium (H3O+) species typically mentioned in chemistry textbooks. Eigen and Zundel cations have been named after two leading German scientists Manfred Eigen and Georg Zundel who proposed these structures in the 1960s. The mid-infrared spectrum of the Zundel cation shows the marked contributions of OH stretching and bending vibrations, and the significant broadband Zundel continuum. This Zundel continuum is caused by the ultrafast fluctuating potential of the proton transfer coordinate that modulates fundamental, overtone and combination tone transitions.
dahms Fig. 2:Transient IR spectra showing the distinct response of the OH stretching mode and the Zundel continuum after femtosecond excitation
Abb. 2 (click to enlarge)  

Original publication: Angewandte Chemie International Edition
The Hydrated Excess Proton in the Zundel Cation H5O2+: The Role of Ultrafast Solvent Fluctuations
Fabian Dahms, Rene Costard, Ehud Pines, Benjamin P. Fingerhut, Erik T. J. Nibbering, Thomas Elsaesser

Contact

Dr. Erik T. J. Nibbering Tel. 030 6392 1477
Prof. Dr. Thomas Elsaesser Tel. 030 6392 1400

 
     
 


Dr. Olga Smirnova installed as Professor at the Technical University Berlin

30 June 2016

smirnova

The Technical University Berlin has installed Dr. Olga Smirnova as a Professor for "Theoretical Physics with a Focus on Atomic and Molecular Laser Physics" on 30 June 2016. The S-Professorship is anchored in the Institute for Optics and Atomic Physics on the TU.

President Prof. Dr. Christian Thomsen und Prof. Dr. Olga Smirnova - Photo: MBI  

The theoretical physicist Smirnova obtained her Ph.D. degree in 2000 at the Moscow State University. In 2003 she moved to the Technical University of Vienna as a Lise-Meitner fellow, in 2005 she joined the theory group at the Steacie Institute for Molecular Sciences, NRC Canada, becoming a permanent staff member in 2006. She came to the Max Born Institute in 2009 to start her own theory group. In 2010 Smirnova was the recipient of the Karl-Scheel-Preis awarded by the Physikalische Gesellschaft zu Berlin. In her research, she focusses on using intense light fields to image and control attosecond dynamics in atoms and molecules. At the TU Berlin she will strengthen the curriculum in the fields of modern optics, intense light-matter interaction and ultrafast science.

We congratulate Prof. Dr. Smirnova to her new position as a professor at the TU Berlin!

Contact

Prof. Olga Smirnova

 
     
 


Quantum Swing - a pendulum that moves forward and backwards at the same time

28 April 2016

Two-quantum oscillations of atoms in a semiconductor crystal are excited by ultrashort terahertz pulses. The terahertz waves radiated from the moving atoms are analyzed by a novel time-resolving method and demonstrate the non-classical character of large-amplitude atomic motions.

The classical pendulum of a clock swings forth and back with a well-defined elongation and velocity at any instant in time. During this motion, the total energy is constant and depends on the initial elongation which can be chosen arbitrarily. Oscillators in the quantum world of atoms and molecules behave quite differently: their energy has discrete values corresponding to different quantum states. The location of the atom in a single quantum state of the oscillator is described by a time-independent wavefunction, meaning that there are no oscillations.

Oscillations in the quantum world require a superposition of different quantum states, a so-called coherence or wavepacket. The superposition of two quantum states, a one-phonon coherence, results in an atomic motion close to the classical pendulum. Much more interesting are two-phonon coherences, a genuinely non-classical excitation for which the atom is at two different positions simultaneously. Its velocity is nonclassical, meaning that the atom moves at the same time both to the right and to the left as shown in the movie. Such motions exist for very short times only as the well-defined superposition of quantum states decays by so-called decoherence within a few picoseconds (1 picosecond = 10-12s). Two-phonon coherences are highly relevant in the new research area of quantum phononics where tailored atomic motions such as squeezed and/or entangled phonons are investigated.

In a recent issue of Physical Review Letters, researchers from the Max Born Institute in Berlin apply a novel method of two-dimensional terahertz (2D-THz) spectroscopy for generating and analyzing non-classical two-phonon coherences with huge spatial amplitudes. In their experiments, a sequence of three phase-locked THz pulses interacts with a 70-μm thick crystal of the semiconductor InSb and the electric field radiated by the moving atoms serves as a probe for mapping the phonons in real-time. Two-dimensional scans in which the time delay between the three THz pulses is varied, display strong two-phonon signals and reveal their temporal signature [Fig. 1]. A detailed theoretical analysis shows that multiple nonlinear interactions of all three THz pulses with the InSb crystal generate strong two-phonon excitations.

This novel experimental scheme allows for the first time to kick off and detect large amplitude two-quantum coherences of lattice vibrations in a crystal. All experimental observations are in excellent agreement with theoretical calculations. This new type of 2D THz spectroscopy paves the way towards generating, analyzing, and manipulating other low-energy excitations in solids such as magnons and transitions between ground and excited states of excitons and impurities with multiple-pulse sequences.

WoeIsBn

Fig. 1 (click to enlarge)

Fig. 1: Experimental data: (a) Two-dimensional (2D) scan of the sum of the electric fields E(τ,t) of the three driving THz pulses A, B, and C as a function of the coherence time τ and the real time t. The contour plot is colored red for positive electric fields and blue for negative fields. (b) 2D scan of electric field ENL(τ,t) nonlinearly emitted by the two-phonon coherence in InSb. The orange dashed line indicates the center of pulse A. (c) Electric field transient ENL(0,t) for the coherence time τ=0.
Movie Movie: Visualization of nonclassical quantum coherences in matter. The two parabolas (black curves) show the potential energy surfaces of harmonic oscillators representing the oscillations of atoms in a crystalline solid around their equilibrium positions, i.e., the so called phonons. Blue curves: probability of presence of atoms at different spatial positions in thermal equilibrium. The quantum mechanical uncertainty principle demands a finite width of such distribution functions. Red curves: time-dependent probability distributions of coherent oscillating states in matter. One-phonon coherence (left panel): the quantum mechanical motion of atoms resembles the classical motion of a pendulum (cyan ball). The latter moves during the oscillation either from left to right or vice versa. Two-phonon coherence (right panel): quantum mechanics allows also for kicking off a nonclassical state with the quantum-mechanical property that the atom can be at two positions simultaneously. The velocity of the atoms behaves also nonclassical, i.e., the atom moves at the same time both to the right and to the left. In the case of a perfect harmonic oscillator the currents of the two parts of the atom exactly cancel each other. Thus, a small anharmonicity is necessary to observe the emission of a coherent electric field transient as shown in Fig. 1(c).

Original publication: Physical Review Letters 116, 177401
Two-Phonon Quantum Coherences in Indium Antimonide Studied by Nonlinear Two-Dimensional Terahertz Spectroscopy
Carmine Somma, Giulia Folpini, Klaus Reimann, Michael Woerner, and Thomas Elsaesser

An additional article with the focus on the experimental technique has been published as well in:

The Journal of Chemical Physics 144, 184202
Phase-resolved two-dimensional terahertz spectroscopy including off-resonant interactions beyond the χ(3) limit
Carmine Somma, Giulia Folpini, Klaus Reimann, Michael Woerner, and Thomas Elsaesser

Contact

Prof. Klaus Reimann Tel. 030 6392 1476
Dr. Michael Wörner Tel. 030 6392 1470
Prof. Dr. Thomas Elsässer Tel. 030 6392 1400

 
     
 


Ultrafast photoelectron imaging grasps competition in molecular autoionization

22nd April 2016

Using time-, energy- and angular-resolved photoelectron imaging a team of researchers from the Max Born Institute in Berlin, in collaboration with colleagues from Milan and Padova, has been able to make snapshots of coupled Rydberg orbitals evolving in time during an ultrafast autoionization process.

Electronic autoionization is a process in which multiple electrons in an excited atom or molecule rearrange in order to "kick out" one of them. Notwithstanding its long research history, the theoretical description of this phenomenon still meets with significant challenges, especially in cases where several electronic autoionizing resonances overlap. These challenges are fundamental, since most of the theories approach the inherently time-dependent autoionization process from an energy-domain perspective, thanks to the prevailing experimental information that is collected in the energy domain. However, recent advances in ultrafast laser spectroscopy and, especially, the generation of ultrashort XUV pulses, allowed the researchers to look at autoionization in nitrogen molecules on its natural time scale.

In a recent publication (M. Eckstein et al, Phys. Rev. Lett. 116, 163003 (2016)), the experimental team has used a newly constructed XUV time delay compensating monochromator beamline to excite one of the complex autoionizing resonances in a nitrogen molecule. In the femtosecond pump-probe experiment, a second time-delayed infrared (IR) laser pulse was able remove the electron from the excited orbitals before the autoionization had a chance to take place, i.e. at a timescale of less than 15 fs. The resulting photoelectrons were detected using a Velocity Map Imaging spectrometer, which delivers both energy- and angular-resolved distributions of photoelectrons. The analysis of the angular distributions, which gives direct information about the shape of the involved electronic orbitals, showed that the photoelectron emission angles change within the lifetime of the resonance (see. Fig. 1). Immediately after the excitation, the emission is more or less isotropic, i.e. the electrons are emitted with equal probability in all directions. However, with increasing pump-probe time delay, the electrons more and more tend to fly out in the direction of the laser light polarization. This observation can only be understood, if one assumes that two different electronic states with substantially different lifetimes are simultaneously probed by the IR pulse. The existence of these two states was indeed predicted by theory more than 30 years ago. The present experiment gives the first confirmation of this old prediction.

The two overlapping electronic states with long and short lifetimes observed by the team suggest a role for the phenomenon of interference stabilization, previously suggested in the field of laser-dressed atoms and in atomic Rydberg physics. In the framework of this theory two overlapping resonances influence each other in such way that one of the two becomes stabilized at the expense of the other. Quantum interferences lead to a counterintuitive effect: the stronger the resonances interact, the more one of them is stabilized. The present work draws parallels between these interference phenomena in laser-dressed atoms and in molecular autoionization. Further experimental and theoretical research will shed light on how general this phenomenon is and will help to achieve a new level of understanding of autoionization dynamics.

Original Publication: Physical Review Letters 116, 163003
Direct Imaging of Transient Fano Resonances in N2 Using Time-, Energy-, and Angular-Resolved Photoelectron Spectroscopy

Full Citation:
Martin Eckstein, Chung-Hsin Yang, Fabio Frassetto, Luca Poletto, Giuseppe Sansone, Marc J. J. Vrakking, Oleg Kornilov
"Direct Imaging of Transient Fano Resonances in N2 Using Time-, Energy-, and Angular-Resolved Photoelectron Spectroscopy"

DOI: 10.1103/PhysRevLett.116.163003

Contact

Dr. Oleg Kornilov, Tel. 030 6392 1246

betaRyIRKornilov

Fig. 1: Angular distributions of photoelectrons emitted upon ionization of an excited nitrogen molecule by a weak IR pulse. The insets show individual angular distributions for time-delays marked by black arrows. The green and blue curves quantify the angular distributions in terms of angular asymmetry parameters - the relative weights of the second and forth Legendre polynomials in the angle distributions.

 

Fig. 1 (click to enlarge)  
 
     
 


Thomas Elsaesser is the 2016 recipient of the Ellis R. Lippincott Award

8 March 2016

Thomas Elsaesser, Director at the Max-Born-Institute and Professor for Experimental Physics at Humboldt University, Berlin, receives the Ellis R. Lippincott Award for his "seminal contributions to the understanding of the ultrafast coherent and incoherent vibrational dynamics of hydrogen bonds in liquids and biomolecules".

The prize recognizes his pioneering work elucidating molecular processes and interactions in water, hydrogen bonded dimers, nucleobase pairs, and biomolecules in an aqueous environment such as hydrated DNA and phospholipids. This research is based on methods of nonlinear infrared spectroscopy in the pico- and femtosecond time domain.
The prestigious Ellis R Lippincott Award was established in 1975 by the Optical Society of America, the Coblentz Society and the Society for Applied Spectroscopy to honor the unique contributions of Ellis R. Lippincott to the field of vibrational spectroscopy. It is presented to an individual who has made significant contributions to vibrational spectroscopy as judged by his or her influence on other scientists. Because innovation was a hallmark of Lippincott's work, this quality must also be demonstrated by candidates for the award. The award is presented in Fall 2016 at the national meeting of one of the sponsoring societies.

Link press release of the Optical Society of America Prestigious Awards and Medals 2016

Contact

Prof. Dr. Thomas Elsaesser Tel. 030 6392 1400

 
     
 


Amplification of Sound Waves at Extreme Frequencies

18 February 2016

An electric current through a semiconductor nanostructure amplifies sound waves at ultrahigh frequency. This method allows for novel, highly compact sources of ultrasound, which can serve as diagnostic tool for imaging materials and biological structures with very high spatial resolution.

Ultrasound is an acoustic wave at a frequency well above the human audible limit. Ultrasound in the megahertz range (1 MHz = 106 Hz = 1 million oscillations per second) finds broad application in sonography for, e.g., medical imaging of organs in a body and nondestructive testing of materials. The spatial resolution of the image is set by the ultrasound wavelength. To image objects on the nanoscale (1 nanometer = 10-9 m = 1 billionth of a meter), sound waves with a frequency of several hundreds of gigahertz (1 gigahertz (GHz) = 1000 MHz) are required. To develop such waves into a diagnostic tool, novel sources and sound amplification schemes need to provide sufficient sound intensities.

In a recent publication (K. Shinokita et al., Phys. Rev. Lett. 116, 075504 (2016)), researchers from the Max-Born-Institut in Berlin together with colleagues from the Paul-Drude-Institut, Berlin, and the École Normale Supérieure, Paris, have demonstrated a new method for sound amplification in a specially designed semiconductor structure consisting of a sequence of nanolayers. Sound waves with a frequency of 400 GHz are generated and detected with short optical pulses from a laser. The sound is amplified by interaction with an electric current traveling through the semiconductor in the same direction as the sound waves. The sound amplification is based on a process called "SASER", the Sound Amplification by Stimulated Emission of Radiation, in full analogy to the amplification of light in a laser. The sound wave stimulates electrons moving with a velocity higher than the sound velocity, to go from a state of high energy to a state of lower energy and, thus, make the sound wave stronger. To achieve a net amplification, it is necessary that there are more electrons in the high-energy than in the lower-energy state. In this way, a 400 GHz sound wave is amplified by a factor of two.

The present work is a proof of principle. For a usable source of high-frequency sound waves, it is necessary to further increase the amplification, which should be possible by improving the design of the structure and, most importantly, better cooling of the semiconductor device. Once such a source is available, it can be used for extending the spatial resolution of sonography towards the scale of viruses, a length scale much shorter than the wavelength of visible light.

Reimann

Fig. 1 (click to enlarge)

Fig. 1: Changes of the sample reflectivity as a function of the delay time after the pump pulse. The observed oscillations are proportional to the instantaneous amplitude of the sound wave. The blue curve shows the results without the current through the superlattice, the red curve with a current of 1 A. With current the amplitude is always larger than without current. The amplification (the ratio between the red and blue curves) is most pronounced at delay times of 300 ps (1 picosecond (ps) is 10-12 s, one millionth of a millionth of a second), since the amplification takes time.
Movie Movie: The sample consists of alternating layers of gallium arsenide and aluminum gallium arsenide (here shown in yellow and red). A short laser pulse (arrow from the left) can generate an acoustic wave, seen as periodic changes of the layer thicknesses. Whereas the amplitude of the acoustic wave increases with time with an electric current (moving electrons, shown as blue dots), it stays constant without a current (upper part).

Original Publication: Physical Review Letters 116, 075504
Strong Amplification of Coherent Acoustic Phonons by Intraminiband Currents in a Semiconductor Superlattice

Keisuke Shinokita, Klaus Reimann, Michael Woerner, Thomas Elsaesser, Rudolf Hey, Christos Flytzanis

This article was chosen as an Editor's suggestion, see also: Pumping up the sound

Contact

Prof. Klaus Reimann Tel. 030 6392 1476
Dr. Michael Wörner Tel. 030 6392 1470
Prof. Dr. Thomas Elsässer Tel. 030 6392 1400

 
     
 


Invisible light flash ignites nano-fireworks

19th January 2016

A team of researchers from the Max Born Institute in Berlin and the University of Rostock demonstrated a new way to turn initially transparent nanoparticles suddenly into strong absorbers for intense laser light and let them explode.

Intense laser pulses can transform transparent material into a plasma that captures energy of the incoming light very efficiently. Scientists from Berlin and Rostock discovered a trick to start and control this process in a way that is so efficient that it could advance methods in nanofabrication and medicine. The light-matter encounter was studied by a team of physicists from the Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy (MBI) in Berlin and from the Institute of Physics of the University of Rostock.

The researchers studied the interaction of intense near-infrared (NIR) laser pulses with tiny, nanometer-sized particles that contain only a few thousand Argon atoms - so-called atomic nanoclusters. The visible NIR light pulse alone can only generate a plasma if its electromagnetic waves are so strong that they rip individual atoms apart into electrons and ions. The scientists could outsmart this so-called ignition threshold by illuminating the clusters with an additional weak extreme-ultraviolet (XUV) laser pulse that is invisible to the human eye and lasts only a few femtoseconds (a femtosecond is a millionth of a billionth of a second). With this trick the researchers could "switch on" the energy transfer from the near-infrared light to the particle at unexpectedly low NIR intensities and created nano-fireworks, during which electrons, ions and colourful fluorescence light are sent out from the clusters in different directions (Figure 1). Their results open unprecedented opportunities for both fundamental laser-matter research and applications and was published in the latest issue of Physical Review Letters.

The experiments were carried out at the Max Born Institute at a 12 meter long high-harmonic generation (HHG) beamline. "The observation that argon clusters were strongly ionized even at moderate NIR laser intensities was very surprising", explains Dr. Bernd Schütte from MBI, who conceived and performed the experiments. "Even though the additional XUV laser pulse is weak, its presence is crucial: without the XUV ignition pulse, the nanoparticles remained unaffected and transparent for the NIR light (Figure 2)." Theorists around Prof. Thomas Fennel from the University of Rostock modelled the light-matter processes with numerical simulations and uncovered the origin of the observed synergy of the two laser pulses. They found that only a few seed electrons created by the ionizing radiation of the XUV pulse are sufficient to start a process similar to a snow avalanche in the mountains. The seed electrons are heated in the NIR laser light and kick out even more electrons. "In this avalanching process, the number of free electrons in the nanoparticle increases exponentially", explains Prof. Fennel. "Eventually, the nanoscale plasma in the particles can be heated so strongly that highly charged ions are created."

The novel concept of starting ionization avalanching with XUV light makes it possible to spatially and temporally control the strong-field ionization of nanoparticles and solids. Using HHG pulses paves the way for monitoring and controlling the ionization of nanoparticles on attosecond time scales, which is incredibly fast. One attosecond compares to a second as one second to the age of the universe. Moreover, the ignition method is expected to be applicable also to dielectric solids. This makes the concept very interesting for applications, in which intense laser pulses are used for the fabrication of nanostructures. By applying XUV pulses, a smaller focus size and therefore a higher precision could be achieved. At the same time, the overall efficiency can be improved, as NIR pulses with a much lower intensity compared to current methods could be used. In this way, novel nanolithography and nanosurgery applications may become possible in the future.

Original Publication: Physical Review Letters 116, 033001
Ionization avalanching in clusters ignited by extreme-ultraviolet driven seed electrons

Full Citation:
Bernd Schütte, Mathias Arbeiter, Alexandre Mermillod-Blondin, Marc J. J. Vrakking, Arnaud Rouzée, Thomas Fennel
"Ionization Avalanching in Clusters Ignited by Extreme-Ultraviolet Driven Seed Electrons"

DOI: 10.1103/PhysRevLett.116.033001

Contact

Dr. Bernd Schütte

Schuette

Fig. 1: Nano-fireworks in an argon nanoparticle are ignited by a moderately intense and invisible XUV laser pulse. A subsequent visible laser pulse heats the nanoparticle very efficiently, resulting in its explosion. Electrons and ions move in different directions and send out fluorescence light in various colors. Without the XUV pulse the nanoparticle would remain intact.

 

Abb. 1 (click to enlarge)  
Schuette

Fig. 2: Ion charge spectra measured from argon nanoparticles. Using an XUV ignition pulse, only a few singly-charged ions are observed (black spectrum). By adding an NIR heating pulse, highly charged ions up to Ar8+ are generated (red spectrum).

Fig. 2 (click to enlarge)  
 
     

 
Archive .... here