/de/research/projects/3.1/topics/Topic3/index-topic3.html
3.1 Dynamics of Condensed Phase Molecular Systems
Project coordinator(s): E. Nibbering, O. Kornilov
Topic 3: Charge transport in biomimetic and biological systems

 

The people involved: Maria Ekimova, Hans-Hermann Ritze, Erik T. J. Nibbering

Former team members:
Ph. D. students: Christian Chudoba, Frank Tschirschwitz, Matteo Rini, Omar F. Mohammed, Katrin Adamczyk, Mirabelle Prémont-Schwarz, Franziska Buchner
Research scientists: Andreas Kummrow, Michael Pfeiffer, Anwar Usman, Hirendra N. Ghosh, Jens Dreyer, Thomas Elsaesser, Thomas Schultz, Andrea Lübcke

International collaboration: Ben-Zion Magnes, Dina Pines, Ehud Pines , Omar F. Mohammed,#,+ Nathalie Banerji,# Bernhard Lang,# Eric Vauthey,,# Sandeep Verma Hirendra N. Ghosh,º Sandra Luber,* Dequan Xiao,* Victor S. Batista,* Gül Bekçioğlu, Christoph Allolio, Felix Hoffmann, Daniel Sebastiani

: Department of Chemistry, Ben Gurion University of the Negev, Beer-Sheva, 84105 Israel
#: Department of Physical Chemistry, University of Geneva, CH-1211 Geneva 4, Switzerland
+: Solar and Photovoltaics Engineering Research Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
º: Bhabha Atomic Research Centre, Radiation and Photochemistry Division, Mumbai, India
*: Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States of America
§: Department of Chemistry and Chemical Engineering, University of New Haven, 300 Boston Post Road, West Haven, Connecticut 06516, United States of America

: Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany.

Transfer of an elementary particle, i.e. an electron, a proton, or a hydrogen, is a fundamental chemical reaction, which are at the core of many energy conversion and associated charge transport processes in chemistry and biology. Examples include light harvesting in plants, enzymatic conversion of carbon dioxide into (bi)carbonate, proton pumping through biological membranes, excitation conversion mechanisms in photostabilisers, acid-base neutralization reactions and the von Grotthuss mechanism of proton transport in bulk water. Techniques to study the transfer of electrons, protons or hydrogen atoms range from nuclear magnetic resonance, inelastic neutron scattering, infrared and Raman spectroscopy, and electronic spectroscopy. In all these cases the transfer reaction is described as motion in a double well potential energy surface along the reaction coordinate, either over the barrier by solvent- or temperature induced effects or by tunnelling through the barrier. In the aforementioned techniques the observed relative populations are always ensemble-averaged over the possible configurations and dynamical aspects can only be deduced in an indirect way. Ultrafast spectroscopy with an optical pump trigger pulse allows for a direct monitoring of the transfer reaction in real time. Until now these time-resolved studies have been performed with optical probing techniques, with which only limited structural information can be obatined. We pursue since 2001 the implementation of femtosecond mid-infrared spectroscopy to study the structural dynamics of charge transfer processes. A recent development in photoelectron spectroscopy enables to monitor electronic states of solvated electrons, protons and ions in liquid jets.

Phase 1 Excited state intramolecular hydrogen transfer (1992-2003):

Initial studies focussed on intramolecular hydrogen and proton transfer dynamics (1992-2003), where the molecular configurations are well-defined. For further reading follow the link. This topic has been revisited in recent years, using a combined experimental and theoretical approach.
This research was in part funded by:
• DFG-Sonderschwerpunktprogramm NI 492 (1998-1999; 2000-2001).

Phase 2 Bimolecular reaction dynamics in solution (2003-2013):

Bimolecular electron transfer and bimolecular proton transfer reactions in liquid solution has been explored since 2003 (more details see link). For either case the interplay between molecular diffusion and reaction dynamics of on-contact complexes has to be taken into account. Polarization-resolved IR spectroscopy enables determination of contact reaction pairs in donor-acceptor electron transfer. Femtosecond IR spectroscopy has provided key insight into different stages of aqueous proton transfer between photoacids and bases, taking place in a sequential von Grotthuss-like mechanism.
This research was in part funded by:
• DFG-Sonderschwerpunktprogramm NI 492 (2000-2001).
• German-Israeli Foundation for Scientific Research GIF-722 jointly with E. Pines (2003-2006).
• German-Israeli Foundation for Scientific Research GIF-876 jointly with E. Pines (2007-2009).

Phase 3 Photoelectron spectroscopy of electron transfer and excited-state dynamics in liquid water (2010-2015):

Ultrafast dynamics of electrons in water has been a research topic in recent years. These electrons are generated by photodetachment of an halide ion by excitation of the so-called charge-transfer-to-solvent (CTTS) states. Generation, energy dissipation, geminate recombination and solvation dynamics are the key processes to be studied with ultrafast photoelectron spectroscopy, using novel liquid jet technology. This technique has also been applied to follow electronic excited state dynamics. A case in point is provided by the ultrafast photophysics of DNA bases, showing efficient internal conversion pathways, illustrating the robustness of these biological building blocks to UV illumination.
This research was in part funded by:
• DFG Normalverfahren LU 1638/1-1 (2011-2014).

Phase 4 Aqueous proton transport (2015-201?):

Proton transfer dynamics is studied in a combined experimental and theoretical approach.
This research is in part funded by:
• DFG Normalverfahren NI 492/13-1 /SE 1008/11-1 jointly with D. Sebastiani (2015-2017).

1. Bimolecular reactions follow diffusional dynamics, typically slow - (sub)nanosecond time scales -, and on-contact reaction dynamics when an encounter complex has been formed.

 



2. Until now, however, structural information on the encounter complexes has been limited. Often it is assumed that the reactants form tight reactant pairs (a.k.a. contact pairs, optimally aligned pairs), but it could well be that rather loose reactant pairs (a.k.a. solvent separated pairs, not well aligned pairs) play a dominant role. In the case of tight pairs couplings are expected to be high, with associated fast reaction rates, whereas for loose pairs the interactions are weaker, and the reactions accordingly are slower.

 



3. We use polarization-sensitive UV-pump IR-probe spectroscopy with which we can learn orientational preferences of the reactant pairs.

 



4. Several proton transfer pathways between acids and bases having different number of water molecules as bridge can be considered. Because proton transfer reactions are typically reversible, many peripatetic pathways may play a key role in the solution phase dynamics. The phrase "peripatetic" in this context has been used first by Casey Hynes, see his News & Views commentary published in 2007 on this.



5. Aqueous carbon dioxide chemistry is usually described using an equilibrium between CO2/H2O and HCO3-/H3O+, with the effective acid dissociation constant Ka(CO2) for which pKa = 6.35. In reality the hydration/dehydration and deprotonation/protonation steps have to be treated separately, with carbonic acid as intermediate. Carbonic acid has not been directly observed in aqueous solution, and as a result the real acidity of carbonic acid has only been roughly estimated to be pKa ~ 3.6 .

 



6. Ultrafast protonation of bicarbonate can be achieved using 2-naphthol-6,8-disulfonate (2N-6,8S). Experimental results have been obtained in D2O for two isotopomers of bicarbonate. The results show that the disappearance of bicarbonate by is correlated with the formation of carbonic acid.

 



7. Formation dynamics of carbonic acid as function of base concentration: 0.25 M (red), 0.5 M (green) and 0.8 M (blue). At the highest base concentration the early time dynamics is dominated by encounter pair reactions, at longer pulse delay the dynamics is governed by diffusional motions of photoacid and base. The experimentally found reaction rate for the protonation of bicarbonate (red dot) is only consistent with previously obtained protonation rates of carboxylate bases CH3-xClxCOO- (blue triangles) and HCOO-(black square) when the real acidity for carbonic acid is used: pKa = 3.45 ± 0.15. In contrast the effective value for CO2/H2O cannot be used for the results obtained with the ultrafast protonation experiment.



8. Time-resolved photoelectron spectroscopy has been succesfully demonstrated to lead to the direct observation of transient electronic structure of gas-phase molecules and surfaces. Recent developments in liquid jet photoelectron spectroscopy enable us now to probe the photophysical and photochemical processes in solvated chromophores by initiating the dynamics with ultraviolet or visible femtosecond laser pulses and probing by time-delayed photoionization of the excited states, projecting the electronic structure onto the ionization continuum.
 


9. Photoelectron spectroscopy of the generation, geminate recombination and solvation dynamics of an electron in liquid water. Geminate recombination rates and solvation dynamics are consistent with those obtained in transient absorption measurements. An early time detection of a fraction of cold solvated electrons, i. e. solvated electrons that are already strongly bound in the moment of generation. and a new sub-ps decay channel for the solvated electrons, not observed before in transient absorption, may be due to specific surface effects. While transient absorption is bulk sensitive, photoelectron spectroscopy at low kinetic energies is surface sensitive.
 


10. Femtosecond photoelectron spectroscopy is used to study the excited state dynamics of hydrated molecules, in particular of hydrated DNA bases and nucleosides. For adenine and adenosine our data is in good agreement with observations from all-optical methods. For thymine, cytosine and their nucleosides our results question the current understanding of the excited state dynamics in these molecules
 


11. Time-resolved photoelectron spectroscopy of volatile liquid samples employs liquid microjets, where the sample solution is pushed through a narrow nozzle. As result of the flow profile and interaction with the nozzle surface, charge separation occurs and leads to significant charging of the liquid jet. The corresponding streaming potential may render photoelectron spectroscopy impossible, i. e. a careful investigation of this effect is necessary. We found that electrokinetic charging is sufficiently reduced by addition of about 30 mM of salt. Furthermore, we have found indication for charge evaporation from the liquid jet. This may explain a reduced transmission of low kinetic energy electrons through the magnetic bottle spectrometer.
 


12. Time-resolved photoelectron spectroscopy is performed on a liquid microjet of dilute aqueous thymine solution to investigate the response to UV excitation. Excited state dynamics is observed along two different reaction coordinates on the ππ* surface. The nπ* state does not play an important role.
 


13. The time-resolved photoelectron data is globally analyzed by three spectral contributions. (a) Comparison between data (color) and global fit (contour lines), (b) decay associated spectra, (c) residuals (color) and global fit (contour lines), and (d) population dynamics of individual contributions. The color scale of the residuals covers a range of ±20% of the maximum photoelectron signal.
 

Publications on

Charge transport in biomimetic and biological systems (since 2009)

 
PCP16
C1-P-2016.xx
  M. Prémont-Schwarz, S. Chaudhuri, D. Pines, E. Pines, D. Huppert, V. S. Batista and E. T. J. Nibbering.
 
Ultrafast photoinduced charge transfer of 1-naphthol and 2-naphthol photoacids to halogenated solvents.
 
in XXth International Conference on Ultrafast Phenomena, L. DiMauro, M. Kuwata-Gonokami, G. Cerullo and J. Ogilvie, eds., OSA Publishing’s Digital Library, xx-yy (2016).
 
Download PDF/PS-File or URL: C1-P-2016.xx
 
RLü15
A2-P-2015.10
  H.-H. Ritze, A. Lübcke.
 
Comment on "Charge transfer to solvent dynamics in iodide aqueous solution studied at ionization threshold" by A. Kothe, M.Wilke, A. Moguilevski, N. Engel, B.Winter, I. Y. Kiyan and E. F. Aziz, Phys. Chem. chem. Phys. 2015, 17, 1918.
 
Physical Chemistry Chemical Physics 17 (2015) 18193-18194
 
Download PDF/PS-File or URL: A2-P-2015.10
 
BNY15
A2-P-2014.07
  F. Buchner A. Nakayama S. Yamazaki H.-H. Ritze A. Lübcke.
 
Excited-state relaxation of hydrated thymine and thymidine measured by liquid-jet photoelectron spectroscopy: experiment and simulation.
 
Journal of American Chemical Society 137 (2015) 2931-2938
 
Download PDF/PS-File or URL: A2-P-2014.07
 
BAE14
C1-P-2014.02
  G. Bekçioglu, C. Allolio, M. Ekimova, E. T. J. Nibbering and D. Sebastiani.
 
Competition between excited state proton and OH– transport via a short water wire: Solvent effects open the gate.
 
Physical Chemistry Chemical Physics 16 (2014) 13047-3099
 
Download PDF/PS-File or URL: C1-P-2014.02
 
MXB13
C1-P-2014.01
  O. F. Mohammed, D. Xiao, V. S. Batista and E. T. J. Nibbering.
 
Excited-state intramolecular hydrogen transfer (ESIHT) of 1,8-dihydroxy-9,10-anthraquinone (DHAQ) characterized by ultrafast electronic and vibrational spectroscopy and computational modeling.
 
J. Phys. Chem. A 118 (2014) 3090-3099
 
Download PDF/PS-File or URL: C1-P-2014.01
 
KRA13
C1-P-2013.02
  M. Koch, A. Rosspeitner, K. Adamczyk, B. Lang, J. Dreyer, E. T. J. Nibbering and E. Vauthey.
 
Real-time observation of the formation of excited radical ions in bimolecular photoinduced charge separation: Absence of the Marcus inverted region explained.
 
J. Am. Chem. Soc. 136 (2013) 9843-9848
 
Download PDF/PS-File or URL: C1-P-2013.02
 
SAN13
C1-P-2012.10
  S. Luber, K. Adamczyk, E. T. J. Nibbering and V. S. Batista.
 
Photoinduced proton coupled electron transfer in 2-(2’-hydroxyphenyl)-benzothiazole.
 
J. Phys. Chem. A 117 (2013) 5269-5279
 
Download PDF/PS-File or URL: C1-P-2012.10
 
GAV13
C1-P-2012.04
  H. Ghosh, K. Adamczyk, S. Verma, J. Dreyer and E. T. J. Nibbering
 
Ultrafast proton coupled electron transfer (PCET) dynamics in 9-anthranol-aliphatic amine system.
 
in: Ultrafast Phenomena XVIII, M. Chergui, A. Taylor, S. Cundiff, R. de Vivie-Riedle, K. Yamagouchi (Eds.), EDP Sciences, (2013) p. 08003/1-3
 
Download PDF/PS-File or URL: C1-P-2012.04
 
BRL12
A2-P-2013.03
  F. Buchner, H.-H. Ritze, J. Lahl and A. Lübcke.
 
Time-resolved photoelectron spectroscopy of adenine and adenosine in aqueous solution.
 
Phys. Chem. Chem. Phys. 15 (2013) 11402-11408
 
Download PDF/PS-File or URL: A2-P-2013.03
 
PBS13
A2-P-2012.05
  N. Preissler, F. Buchner, T. Schultz and A. Lübcke.
 
Electrokinetic charging and evidence for charge evaporation in liquid microjets of aqueous salt solution.
 
J. Phys. Chem. B 117 (2013) 2422-2428
 
Download PDF/PS-File or URL: A2-P-2012.05
 
PBP13
C1-P-2012.07
  M. Prémont-Schwarz, T. Barak, D. Pines, E. T. J. Nibbering and E. Pines.
 
Ultrafast excited-state proton transfer reaction of 1-naphthol-3,6-disulfonate and several 5-substituted 1-naphtol derivatives.
 
J. Phys. Chem. B 117 (2013) 4594-4603
 
Download PDF/PS-File or URL: C1-P-2012.07
 
BRB12
A2-P-2012.01
  F. Buchner, H.-H. Ritze, M. Beutler, T. Schultz, I. V. Hertel and A. Lübcke.
 
Role of alkali cations for the excited state dynamics of liquid water near the surface.
 
J. Chem. Phys.137 (2012) 024503/1-10
 
Download PDF/PS-File or URL: A2-P-2012.01
 
BSL12
A2-P-2011.06
  F. Buchner, T. Schultz and A. Lübcke.
 
Solvated electrons at the water - air interface: surface versus bulk signal in low kinetic energy photoelectron spectroscopy.
 
Phys. Chem. Chem. Phys. 14 (2012) 5837-5842
 
Download PDF/PS-File or URL: A2-P-2011.06
 
GAV12
C1-P-2009.08
  H. N. Ghosh, K. Adamczyk, S. Verma, J. Dreyer and E. T. J. Nibbering.
 
On the role of hydrogen bonds in photoinduced electron-transfer dynamics between 9-fluorenone and amine solvents.
 
Chem. Eur. J. 18 (2012) 4930-4937
 
Download PDF/PS-File or URL: C1-P-2009.08
 
MLB11
C1-P-2011.02
  O. F. Mohammed, S. Luber, V. S. Batista and E. T. J. Nibbering.
 
Ultrafast branching of reaction pathways in 2-(2´-hydroxyphenyl)benzothiazole in polar acetonitrile solution.
 
J. Phys. Chem. A 115 (2011) 7550-7558
 
Download PDF/PS-File or URL: C1-P-2011.02
 
GVN11
C1-P-2010.06
  H. N. Ghosh, S. Verma and E. T. J. Nibbering.
 
Ultrafast forward and backward electron transfer dynamics of coumarin 337 in hydrogen bonded anilines as studied with femtosecond UV-pump/IR-probe spectroscopy.
 
J. Phys. Chem. A 115 (2011) 664-670
 
Download PDF/PS-File or URL: C1-P-2010.06
 
LAB11
C1-P-2010.11
  B. Lang, K. Adamczyk, N. Banerji, D. Villamaina, J. Dreyer, E. T. J. Nibbering and E. Vauthey.
 
Tracking the pathway of an ultrafast bimolecular electron transfer reaction.
 
in Ultrafast Phenomena XVII, M. Chergui, D. M. Jonas, E. Riedle, R. W. Schoenlein and A. J. Taylor, eds., pp. 376-378 (Oxford University Press, Oxford, 2011).
 
Download PDF/PS-File or URL: C1-P-2010.11
 
APP11
C1-P-2010.10
  K. Adamczyk, M. Prémont-Schwarz, D. Pines, E. Pines and E. T. J. Nibbering.
 
Ultrafast generation of aqueous carbonic acid.
 
in Ultrafast Phenomena XVII, M. Chergui, D. M. Jonas, E. Riedle, R. W. Schoenlein and A. J. Taylor, eds., pp. 478-480 (Oxford University Press, Oxford, 2011).
 
Download PDF/PS-File or URL: C1-P-2010.10
 
BLH10
A2-P-2010.06
  F. Buchner, A. Lübcke, N. Heine and Th. Schultz.
 
Time-resolved photoelectron spectroscopy of liquids.
 
Rev. Sci. Instrum. 81 (2010) 113107
 
Download PDF/PS-File or URL: A2-P-2010.06
 
LBH10
A2-P-2010.04
  A. Lübcke, F. Buchner, N. Heine, I. V. Hertel and T. Schultz.
 
Time-resolved photoelectron spectroscopy of solvated electrons in aqueous NaI solution.
 
Phys. Chem. Chem. Phys. 12 (2010) 14629-14634
 
Download PDF/PS-File or URL: A2-P-2010.04
 
APP09
C1-P-2009.01
  K. Adamczyk, M. Prémont-Schwarz, D. Pines, E. Pines and E. T. J. Nibbering.
 
Real-time observation of carbonic acid formation in aqueous solution.
 
Science 326 (2009) 1690-1694
 
Download PDF/PS-File or URL: C1-P-2009.01
 

 

 

Publications on excited state intermolecular proton transfer (2003-2009)

 
MAP09b
C1-P-2009.05
  N. Munitz, Y. Avital, D. Pines, E. T. J. Nibbering and E. Pines.

  Cation-enhanced deprotonation of water by a strong photobase.

  Isr. J. Chem. 47 (2009) 261-272

  Download PDF/PS-File or URL: C1-P-2009.05
 
ADP09
C1-P-2009.02
  K. Adamczyk, J. Dreyer, D. Pines, E. Pines and E. T. J. Nibbering.

  Ultrafast protonation of cyanate anion in aqueous solution.

  Isr. J. Chem. 47 (2009) 217-225

  Download PDF/PS-File or URL: C1-P-2009.02
 
MAP09a
C1-P-2008.06
  O. F. Mohammed, K. Adamczyk, D. Pines, E. Pines and E. T. J. Nibbering.

  Aqueous proton transfer pathways in bimolecular acid-base neutralization.

  in Ultrafast Phenomena XVI, Springer Ser. Chem. Phys. 92, P. Corkum, S. De Silvestri, K. A. Nelson, E. Riedle and R. Schoenlein, eds., pp.622-624 (Springer, Berlin, Germany, 2009).

  Download PDF/PS-File or URL: C1-P-2008.06
 
MPP07b
C1-P-2007.03
  O. F. Mohammed, D. Pines, E. Pines and E. T. J. Nibbering.

  Aqueous bimolecular proton transfer in acid-base neutralization.

  Chem. Phys. 341 (2007) 240-257

  Download PDF/PS-File or URL: C1-P-2007.03
 
MPD07
C1-P-2006.04
  O. F. Mohammed, D. Pines, J. Dreyer, E. Pines and E. T. J. Nibbering.

  Ultrafast aqueous bimolecular acid-base proton transfer: From direct exchange to sequential hopping.

  in Ultrafast Phenomena XV, Springer Ser. Chem. Phys. 88, P. B. Corkum, D. M. Jonas, R. J. D. Miller and A. M. Weiner, eds., pp. xx-yy (Springer, Berlin, Germany, 2007).

  Download PDF/PS-File or URL: C1-P-2006.04
 
MPD05
C1-P-2006.06
  O. F. Mohammed, D. Pines, E. T. J. Nibbering, E. Pines.

  Base-induced solvent switches in acid-base reactions.

  Angew. Chem. 46 (2007) 1458-1461; Angew. Chem.-Int. Edit. 46 (2007) 1458-1461

  Download PDF/PS-File or URL: C1-P-2006.06 and C1-P-2006.06
 
PNP07
C1-P-2006.09
  D. Pines, E. T. J. Nibbering and E. Pines.

  Relaxation to equilibrium following photoacid dissociation in mineral acids and buffer solutions.

  J. Phys.: Condens. Matter 19 (2007) 065134

  Download PDF/PS-File or URL: C1-P-2006.09
 
NMD06
C1-P-2006.08
  E. T. J. Nibbering, O. F. Mohammed, J. Dreyer, D. Pines, E. Pines.

  Ultrafast aqueous bimolecular proton transfer.

  in Trombay Symposium on Radiation and Photochemistry (TSRP-2006), T. Mukherjee, A. C. Bhasikuttan and H. Pal, eds., pp. 36-38 (R. V. Enterprises. Mumbai, India, 2006).
 
NPi06
C1-P-2005.02
  E. T. J. Nibbering and E. Pines.

  Bimolecular proton transfer in solution.

  in Hydrogen Transfer Reactions, Volume 2: Physical and Chemical Aspects IV-VII, J. T. Hynes, J. P. Klinman, H.-H. Limbach and R. L. Schowen, eds., Part IV: Hydrogen Transfer in Protic Systems, Chapter 14, pp. 443-458 (Wiley-VCH, Weinheim, Germany, 2006).

  Download PDF/PS-File or URL: C1-P-2005.02
 
RMP06
C1-P-2003.13
  .M. Rini, B.-Z. Magnes, E. Pines and E. T. J. Nibbering.

  Direct observation of bimodal intermolecular proton transfer in photoacid-base pairs in water.

  in Time Resolved Vibrational Spectroscopy, Proceedings of the "XI TRVS International Conference (Castiglione della Pescaia, May 24-29 2003), Fondazione Carlo Marchi - Quaderni 26, S. Califano, P. Foggi, R. Righini, eds., pp. 223-228 (Leo S. Olschki, Firenze, Italy, 2005).
 
MPD05
C1-P-2005.05
  O. F. Mohammed, D. Pines, J. Dreyer, E. Pines and E. T. J. Nibbering.

  Sequential proton transfer through water bridges in acid-base reactions.

  Science 310 (5745), 83-86 (2005).

  Download PDF/PS-File or URL: C1-P-2005.05
 
NFP05
C1-P-2004.06
  E. T. J. Nibbering, H. Fidder and E. Pines.

  Ultrafast chemistry: using time-resolved vibrational spectroscopy for interrogation of structural dynamics.

  in Annual Review of Physical Chemistry 56, S. R. Leone, P. Alivisatos and A. E. McDermott, eds., pp. 337-367 (Annual Reviews, Palo Alto, USA, 2005).

  Download PDF/PS-File or URL: C1-P-2004.06
 
MDM05
C1-P-2004.15
  O. F. Mohammed, J. Dreyer, B.-Z. Magnes, E. Pines and E. T. J. Nibbering

  Solvent dependent photoacidity state of pyranine as monitored with transient mid-infrared spectroscopy

  ChemPhysChem 6 (2005) 625-636

  Download PDF/PS-File or URL: C1-P-2004.15
 
MRD05
C1-P-2004.10
  O. F. Mohammed, M. Rini, J. Dreyer, B.-Z. Magnes, D. Pines, E. T. J. Nibbering and E. Pines.

  Bimodal intermolecular proton transfer in acid-base neutralization reactions in water.

  in Ultrafast Phenomena XIV, Springer Ser. Chem. Phys. 79, T. Kobayashi, T. Okada, T. Kobayashi, K. A. Nelson and S. De Silvestri, eds., pp. 448-452 (Springer, Berlin, 2005).

  Download PDF/PS-File or URL: C1-P-2004.10
 
RPM04
C1-P-2004.04
  M. Rini, D. Pines, B.-Z. Magnes, E. Pines and E. T. J. Nibbering.

  Bimodal proton transfer in acid-base reactions in water.

  J. Chem. Phys. 122 (19), 9593-9610 (2004).

  Download PDF/PS-File or URL: C1-P-2004.04
 
RMM04
C1-P-2003.12
  M. Rini, O. F. Mohammed, B.-Z. Magnes, E. Pines and E. T. J. Nibbering.  

  Bimodal intermolecular proton transfer in water: Photoacid-base pairs studied with ultrafast infrared spectroscopy.

  in Femtochemistry and Femtobiology: Ultrafast Events in Molecular Science, M. Martin, J. T. Hynes, eds., pp. 189-192 (Elsevier, Amsterdam, the Netherlands, 2004).
 
RMP03
C1-P-2003.06
  M. Rini, B.-Z. Magnes, E. Pines and E. T. J. Nibbering. 

  Real-time observation of bimodal proton transfer in acid-base pairs in water.

  Science 301 (5631), 349-352 (2003).

  Download PDF/PS-File or URL: C1-P-2003.06
 
 

Publications on excited state intermolecular electron transfer (2006-2009)

 
MAB09
C1-P-2008.07
  O. F. Mohammed, K. Adamczyk, N. Banerji, J. Dreyer, B. Lang, E. T. J. Nibbering and E. Vauthey.

  Direct femtosecond observation of tight and loose ion pairs upon photoinduced bimolecular electron transfer.

  in Ultrafast Phenomena XVI, Springer Ser. Chem. Phys. 92, P. Corkum, S. De Silvestri, K. A. Nelson, E. Riedle and R. Schoenlein, eds., pp. 613-615 (Springer, Berlin, Germany, 2009).

  Download PDF/PS-File or URL: C1-P-2008.07
 
MAB08
C1-P-2007.09
  O. F. Mohammed, K. Adamczyk, N. Banerji, J. Dreyer, B. Lang, E. T. J. Nibbering and E. Vauthey.

  Direct femtosecond observation of tight and loose ion pairs upon photoinduced bimolecular electron transfer.

  Angew. Chem. 120 (2008), 9184-9188 ; Angew. Chem. Int. Ed. 47 (2008) 9044-9048

  Download PDF/PS-File or URL: C1-P-2007.09 and C1-P-2007.09
 
MBL06
C1-P-2006.10
  O. F. Mohammed, N. Banerji, B. Lang, E. T. J. Nibbering and E. Vauthey.

  Photoinduced bimolecular electron transfer investigated by femtosecond time-resolved infrared spectroscopy.

  J. Phys. Chem. A 110 (2006) 13676-13680

  Download PDF/PS-File or URL: C1-P-2006.10
 

Publications on excited state intramolecular hydrogen transfer (1994-2004)

NFP05
C1-P-2004.06
  E. T. J. Nibbering, H. Fidder and E. Pines.

  Ultrafast chemistry: using time-resolved vibrational spectroscopy for interrogation of structural dynamics.

  in Annual Review of Physical Chemistry 56, S. R. Leone, P. Alivisatos and A. E. McDermott, eds., pp. 337-367 (Annual Reviews, Palo Alto, USA, 2005).

  Download PDF/PS-File or URL: C1-P-2004.06
 
RDN03
 C1-P-2003.02
  M. Rini, J. Dreyer, E. T. J. Nibbering and T. Elsaesser. 

  Ultrafast vibrational relaxation processes induced by intramolecular excited state hydrogen transfer

  Chem. Phys. Lett. 374 (2003) 13-19

  Download PDF/PS-File or URL: C1-P-2003.02
 
RKD03
C1-P-2002.08 
  M. Rini, A. Kummrow, J. Dreyer, E. T. J. Nibbering and T. Elsaesser.

  Ultrafast site-specific mid-infrared spectroscopy of excited-state intramolecular proton transfer

 

in Ultrafast Phenomena XIII, Springer Ser. Chem. Phys. 71,R. D. Miller, M. M. Murnane, N. F. Scherer and A. M. Weiner, Eds. (Springer Verlag, Berlin, 2003) pp. 465-467

 
Els02
C1-P-2002.14
  T. Elsaesser.

  Ultrafast excited state hydrogen transfer in the condensed phase

  in Ultrafast hydrogen bonding dynamics and proton transfer processes in the condensed phase, T. Elsaesser and H. J. Bakker eds. (Kluwer, Dordrecht, Netherlands, 2002) pp. 119-153
 
RKD02
C1-P-2002.03
 
  M. Rini, A. Kummrow, J. Dreyer, E. T. J. Nibbering and T. Elsaesser. 

  Femtosecond mid-infrared spectroscopy of condensed phase hydrogen-bonded systems as a probe of structural dynamics

  Faraday Discuss. 122 (2003) 27-40

  Download PDF/PS-File or URL: C1-P-2002.03
 
AOB01
C1-P-2001.05
 
  S. Ameer-Beg, S. M. Ormson, R. G. Brown, P. Matousek, M. Towrie, E. T. J. Nibbering, P. Foggi and F. V. R. Neuwahl. 

  Ultrafast measurements of excited state intramolecular proton transfer (ESIPT) in room temperature solutions of 3-hydroxyflavone and derivatives

  J. Phys. Chem. A 105 (2001) 3709-3718

  Download PDF/PS-File or URL: C1-P-2001.05
 
DNK98
C3-P-1998.02 
  O. Dühr, E. T. J. Nibbering and G. Korn. 

  A tunable ultrafast spectrometer based on hollow waveguides: Demonstration in the violet-blue

  Appl. Phys. B 67 (1998) 525-527

  Download PDF/PS-File or URL: C3-P-1998.02
 

PCL99
C1-P-1997.07

  M. Pfeiffer, C. Chudoba, A. Lau and T. Elsaesser. 

  Coherent motion of low frequency vibrations in ultrafast excited state proton transfer

  Laser Chemistry 19 (1999) 101-103
 
PLL97a
C1-P-1996.09 
  M. Pfeiffer, A. Lau, K. Lenz and T. Elsaesser. 

  Anharmonicity effects in the resonance Raman spectra of heterocyclic aromatic molecules showing photoinduced intramolecular proton transfer

  Chem. Phys. Lett. 268 (1997) 258-264

  Download PDF/PS-File or URL: C1-P-1996.09
 
PLL97b
C1-P-1996.01 
  M. Pfeiffer, K. Lenz, A. Lau, T. Elsaesser and T. Steinke. 

  Analysis of the vibrational spectra of heterocyclic aromatic molecules showing internal proton and deuterium transfer

  J. of Raman Spectrosc. 28 (1997) 61-72

  Download PDF/PS-File or URL: C1-P-1996.01
 
C3-P-1996.15   C. Chudoba, E. Riedle, M. Pfeiffer and T. Elsaesser.

  Vibrational coherence in ultrafast excited state proton transfer

  Chem. Phys. Lett. 263 (1996) 622-628

  Download PDF/PS-File or URL: C3-P-1996.15
 
C3-C-1995.01    C. Chudoba, S. Lutgen, T. Jentzsch, M. Woerner, M. Pfeiffer, E. Riedle and T. Elsaesser. 

  Femtosecond studies of intramolecular proton transfer in the condensed phase

  in Laser in Forschung und Technik, Eds. W. Waidelich, H. Hügel, H. Opower, H. Tiziani, R. Wallenstein and W. Zinth, Springer (Berlin 1996), pp. 175-178
 

C3-P-1995.01

  C. Chudoba, S. Lutgen, T. Jentzsch, E. Riedle, M. Woerner and T. Elsaesser. 

  Femtosecond studies of vibronically hot molecules produced by intramolecular proton transfer in the excited state

  Chem. Phys. Lett. 240 (1995), 35-41

  Download PDF/PS-File or URL: C3-P-1995.01
 

C1-P-1995.04

  M. Pfeiffer, K. Lenz, A. Lau and T. Elsaesser. 

  Resonance Raman studies of heterocyclic aromatic compounds showing ultrafast intramolecular proton transfer

  J. Raman Spectrosc. 26 (1995), 607-615

  Download PDF/PS-File or URL: C1-P-1995.04
 

C-P-1994.05

  T. Höfer, P. Kruck, T. Elsaesser and W. Kaiser. 

  Transient states of an intramolecular proton transfer cycle studied by degenerate four-wave-mixing

  J. Phys. Chem. 99 (1995), 4380-4385

  Download PDF/PS-File or URL: C-P-1994.05